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In the course of a study, which is to be published 
elsewhere, of the response of atoms to external 
fields, we found theoretical evidence for the possi- 
bility of the occurrence of new resonances in atoms, 
which are different in kind from single-particle 
type excitations. They mark the coherent response 
of an atom as a whole. 

We have studied the response function ~ ( 9 ,  w )  in 
terms of the wave vector q and frequency w of the 
external field. Assuming that the external field acts 
via the density operator and that the external field 
is sufficiently weak for the Born approximation to 
be valid, R(9, w )  is simply related to the auto-cor- 
relation function of the density fluctuations. The 
poles of R(9, w )  signify resonance frequencies of the 
system, while the imaginary part gives the absorp 
tion spectrum, which is expressed conveniently in 
terms of the differential oscillator strenght distri- 
bution g(w): 

(1 1 2w g ( w )  =- Im R(9, w). 
w2 

Q. (1) obeys the sum rule crg(w)dw = N, N being 
the number of electrons in the system. 

We introduce first the Fourier transform with 
respect to time of the auto-correlation function in 
a Hartree-Fock picture, which is of the form 

@Ax)  denotes the product .t(x) u.(x) of the one- 
electron wave functions associafled with the one- 

particle excitation i - j .  We account for the Coulomb 
interaction between excitations in an approximation 
corresponding to the time-dependent Hartree pic- 

. electron states i and j ,  and n stands for the single 
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ture, in which the corresponding correlation func- 
tion Q(x, x ' ,  LL') is found by solving the following inte- 
gral equation, written symbolically as 

where v denotesbe static Coulomb interaction. 
The response function is expressed in terms of 
Q(x,x ' ,  w )  as follows, 

, Q = Qo + Qo V Q, (3) 

R(9, w )  = s d3x d3Y e-i9 (x-x') Q(x,x' , w).  (4) 

Various approximations to g(w) can be found intro- 
ducing different assumptions of the structure of 
Qo(x, x' , w )  and different approximations in solving r 

(3)- 

of a uniform electron gas and assuming local mo- 
mentum conservation in solving (3) leads to the 
well-known result 

Assuming the energy spectrum to be locally that 

From (5) all dielectric properties of the electron 
gas follow as first  derived by Lindhard l). The r e  
sulting resporrse fuactim 

shows that in this approximation, atoms respond 
locally to the wave vector of the external field only. 
Such approximation, therefore, cannot give infor- 
mation on possible resonances of an atom as a 
whole. 

herence in the response of different parts of an 
atom can be constructed, using the Fredholm ex- 
pansion of Q(x,x' ,  w) ,  where the numerator and the 
denominator a re  analytic functions in the coupling 
constant. To lowest order in the interaction, we 
find a dispersion relation of the form 

Approximate solutions retainjng features of co- 
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Introducing a schematic Hartree model for the atom 
in which the matrix elements of the interaction fac- 
torises as in the schematic model introduced by 
Brown 2) for a discussion of giant resonances in 
nuclei, (7) is indeed the exact dispersion equation. 

terms in the coupling constant where required, as 
the resonance frequencies of atomic modes. 

The formal derivation of the response function 
and of g(w) for the schematic Hartree model is a 
straightforward matter and will be discussed else- 
where. Clearly, a detailed analysis of eq. (?) for 
the spectrum of a real atom is a rather formidable 
program; work is in progress along these lines. 

For a survey of the contents of eq. (7) it is illu- 
minating to recast the theory in terms of the statis- 
tical model of the atom, since then the atomic 
properties only depend parametrically on the atomic 
number 2. We again take for the local Qo the prop- 
agator function of the high-density gas. But instead 
of proceeding to eq. (4) via eq. (5), we sum over 
the Fredholm expansion to leading terms in 2 in 
each expansion term. The approximate dispersion 
relation for the statistical atom now becomes. 
1 + ( 2 ~ ) ' ~  Id3% d3q log (1 - 4nQ0(4, w) /q2]  = 0, (8) 

taking for the imaginary damping terms only the 
principal values of the logarithm between -in and +in. 

To get a first qualitative idea about the nature 
of these resonances, one may solve eq. (8) approx- 
imately by retaining only the important contribu- 
tions for  small 191 while neglecting the contribu- 
tions for  191 larger than a suitably chosen 1 qc(x) I 
where local plasma states decay rapidly into parti- 
cle-hole states. We set qc3 = ,9(4n)rwo, where in 
atomic units wo(x) = [41p(x)]a, and p(x) the elec- 
tron density at the point x in the atom, p is a con- 
stant - 1. We have calculated a solution curve of 
eq. (8) for  a statistical atom based on a simple des- 
cription of atomic structure due to Bohr 3). The re- 
sult is shown in fig. 1. The following notation is 
used: y = u/uc,  where wc =KcZ is a maximum 
frequency in the statistical model, and x = p/Kc 

We indentify the roots of eq. (7), including higher 

I 
0.4 I I 

'r: 
Fig. 1. Solution curve for eq. (8) in the Bohr model y = 

u/wC, where % = K g  is the maximum frequency. 
x = g/Kc is a parameter related to the momentum 
cut-off qc = @(4n)4al0. 

is a dimensionless 2-independent parameter of the 
model. For x = 0, we retrieve eq. (6). The curves 
show that for x smaller than a critical value, no 
root of eq. (8) exists. For x larger than this criti- 
cal value (here - l.ll), two roots rl and J?2 ap- 
pear which separate more and more as x inceases. 
To the extent that this preliminary calculation for 
a simple statistical model applies to real  atoms, 
we conclude that the new atomic resonances may 
appear over a more or  less extended intermediate 
range of atomic frequencies. We will report on the 
f u l l  response function for the statistical Thomas- 
Fermi atom in a forthcoming publication. If solu- 
tions of eq. (7) exist in this case, an estimate can 
be made of the oscillator strength residing in these 
resonances, which will indicate the possibility for 
observing and indentifying the atomic modes where 
they exist. 
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